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ABSTRACf. The problem of scheduling jobs in a general job-shop to
minimize the maximum completion time is considered. A branch and
bound algorithm is proposed. The lower bound is obtained from the
preemptive schedules which fqrm solutions of single machine subproblems.
In the branching rule, a set of operations which each require the same
machine is selected and branches of the search tree corresponding to the
possibilities that an operation of this set is sequenced before (or after) the
others. Computational experience with a variety of test problems is re-ported. .

Introduction

In the job-shop problem, there are mmachines (numbered 1,... , m) which are used
to process n jobs (numbered 1, ..., n). Each machine can handle at most One job at a
time. Job i( i = 1, ,.; , n) consists of a sequence of operations Oil' ..., °iniwhich are
to be performed on machines mil' ...,min- and which require positive processing
times Pil' ...'Pin- respectively. Processing starts at time zero. There are technological
constraints which specify that operation o ij cannot start until o ij -I is completed (i =
1, ...,11.,' j = 2, ..., ni)' Preemption of operations is not allowed so that once an oper-
ation has started, it must be completed without interruption. The objective is to de-
termine a processing order of operations on each machine whicli minimizes the
maximum completion time.
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For many years, the branch and bound algorithm of McMahon and Florian[l) was
considered to be the most effective. The enumeration scheme in this algorithm is
based on the generation Qf active schedules to give a search tree for which each node
has a corresponding initial partial sequence of jobs on each machine. Lower bounds
are obtained from the solution of single machine subproblems in which each job has
a rele.ase date, a processing requirement on the particular machine under considera-
tion and requires a further specified time for its completion. This single machine
problemwithrel!?oase dates is equivalent to the problem of minimizing the maximum
lateness and is known to be NP-hardI2]. Nevertheless, McMahon and Florian propose
a branch and bound algorithm which solves it fairly efficiently to give a lower bourid
for the job-shop problem. Many attempts to improve upon this algorithm have ended
in failure. For example, the algorithm of Lageweg et a/.l3], in which at each node of
th_e search tree the branching rule fixes the order between a pair of operations that re-
quire the same machine, appears less effective than the active schedules branching.
Also, attempts to obtain improved lower bounds using surrogate duality approaches
provide, at best, only marginal increases to the single machine bounds at considera-
ble computational expense[4].

Barker and McMahon[S] propose a branch and bound algorithm in which a heuris-
tic method is used to find a feasible schedule at each node of the search tree. A set of
consecutively processed operations on some machine is found from this feasible
schedule. In an attempt to improve this schedule, either the first job in this set is
scheduled to start earlier or an alternative job is sequenced last in this set. Branches
of the search tree are constructed for each of these possibilities. For the first set of
branches, each job of the set is constrained to be sequenced before the others is given
a suitable ea.-liest start time to ensure that processing for this set starts earlier than in
the heuristic schedule. For the second set of branches, each job other than the origi-
nal last job is constrained to be sequenced after the others. The single machine
bounds of McMahon and Florian are computed at each node. Computationalresults
indicate thatforsoIrle problems, this algorithm of Barker and McMahon is more ef-
fective than that of McMahon and Florian but for other problems, the McMaho~-
Florian algorithm yields better results.

Recently, Carlier and Pinson[6] describe a branch and bound algorithm which sol-
ves a well-known test problem with 10 jobs and 10 machines: previously, this prob-
lem had resisted the attempts of many researchers to solve it. The success of this al-
gorithm is due to the branching rule which selects a set of operations that require the
same ma~hine and branches on which operation is sequenced before (or after) the
others in this set. However, dominance rules which, at each search tree node, fix the
order between various pairs of operations that require the same machine also influ-
ence the efficiency of the algorithm.

Th~re has also been much research on heuristic methods which generate approxi-
mate solutions. The most notable contribution here is that of Adams et al. [7] who ob-
tain hi2h quality solutions to some test problems.



203A Branch and Bound Algorithm.

Our aim is to devise a new, more effective, branch and bound algorithm, based on
the following observations. Since the single machine bounds of McMahon and Flo-
rian are often not close to the optimum, it seems preferable to use a slightly weaker
but more quickly computed 10wer bound. In particular, the preemptive version of
the single machine subproblem is easily solved and, in many cases, its value is close to
the non-preemptive bound of McMahon and Florian. In terms of a branching rule,
the active schedule generation method of McMahon and Florian is rather inflexible
since the important decisions that affect the maximum completion time may occur
towards the end of the schedule and, hence, their effect will not be apparent until the
lower levels of the search tree are reached. This inflexibility is overcome in the
schemes of Lageweg etal., Barker and McMahon, and Carlier and Pinson. However,
in the first two of these, the set of jobs that determines which branches are added to
the search tree does not depend on any lower bounding calculation. We believe that
a successful branching rule should be capable of adapting itself to the particular prob-
lem under consideration and, furthermore, the components of the schedule which
are fixed at any branching should be aimed at increasing the lower bound. This latter
effect is most easily achieved by using the results of the lower bounding calculation to
decide upon which components should be fixed next.

The paper is organized as follows: Section 2 describes how lower bounds are com-
puted. A complete description of our branch and bound algorithm is given in Section
3, with special emphasis placed upon the branching procedure. Section 4 reports on
computational experience with the algorithm and some concluding remarks are con-
tained in Section 5.

Lower Bounds

Our branch and bound algorithm uses a branching rule that fixes the ordering of
certain pairs of operations in the search tree. Before describing the lower bounding
computations, it is convenient to introduce some terminology. An operation 0 ij is a
predecessor of operation 0 kl if 0 kl cannot start until 0 ij is completed. The technolog-
ical constraints define some predecessor operations, while the ordering fixed within
the search tree provide others. The use of transitivity generates other predecessors.
If 0 ij is a predecessor of 0 kP then we refer to 0 kl as a successor of 0 if

For each operation 0 ij' we can compute a release date r ij which represents the ear-
liest time that 0 ij can start and a tail q ij which represents the minimum time that must
elapse between .the c<;>mpletion of 0 ij and the completion of all operations. Each op-
eration that has no predecessors is assigned a zero released date. Thereafter, release
dates are assigned to operations °ij whose predecessors Bij already have release
dates using
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where Mij is the set of operations that require machine mil The first term in (1) uses
the observation that operation O. cannot start before all its predecessors are com-'I
pleted, while .the second term deems the start time of 0 ij to be not less than the sum
of the earliest start time of some predecessor operation that uses the same machine
mij and the total processing time of such operations. It is clear from (1) thatcorres-
ponding to rij is a sequence of predecessor operations such that rij is equal to the sum
of their processing times.

Analogously, each operation which has no successors is assigned a zero tail. We
then compute the tails of other operations 0 ij whose successors Aij already have tails

using

j \},qi \j q; \\ ; \\qij = max max
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We observe from (2) that qij is equal to the sum of processing times of a sequence of
operations which are successors of operation 0 ij'

Let {OiUi ' ..., Qitil.} represent ~he set of all operatio~s tha~ are requ.ired to be ~ro-
cessed on some machIne k. Consider the subproblem m which capacity constraInts
on all machines other than k are relaxed. For the resulting single machin~ subprob-
lem, operation °i j (s = 1, ...t) has a release date r. .when it becomes available for
processing, requi:e's a processing time Pi j on the'~achine and requires a furthertime qi J.for its completion. S S

S S

To obtain a lower bound LBk based on machine k, the preemptive single machine
subproblem is solved in which the processing of any operation 0 i j (s = 1, ..., t) may
be interrupted and resumed at a later stage. This preemptivepr061~m is solved by the
forward scheduling algorithm of Baker and SuIS] in which no unnecessary machine
idle time is allowed. When there is a choice of operations to process, the one having
the largest tail is chosen. Also, if during the processing of an operation another oper-
ation with a larger tail becomes available, then processing is interrupted at the re-
lease date of the latter operation. Having computed all single machine bounds, the
value LB = max { LBi, ..., LBm } is used as a lower bound in the search tree.

0 I

The Branch and Bound Algorithm

We first describe the branching rule that is used in the branch and bound al-
gorithm. Branching aims to enforce feasibility either through the elimination of
preemption or through the elimination of overlaps (an overlap occurs when two op-
erations which require the same machine are- processed at the same time) in the
single machine subproblem based on a machine k for which LB = LBk' The branch,.
ing rule selects a set of operationsS which require the same machine and constructs
branches according to which operation of S is sequenced before (or in some cases
after) the others, Thus, it remains to specify how the set S is chosen and whether the
first or the last operation of S should be fixed by bran,ching.
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To determine S, if no preemption occurs in the solution of the single machine sub-
problem based on machine k, then any branching is based on the elimination of over-
laps. Otherwise, if some job is preempted, we first attempt to find a non-preemptive
schedule for the subproblem based on machine k in which all jobs are completed by
time LB. The following forward sequencing heuristic of Schrage/9] is applied in which
no unnecessary machine idle time is allowed. When there is a choice of operations,
one with the largest tail is scheduled. If some job is completed after time LB in the
heuristic schedule, then branching is aimed at the elimination of preemption in the
preemptive schedule for this subproblem. Let °9 denote the first operation that is
preempted in thi6 single machine subproblem and let S denote the set of operations,
including °ij itself, which are scheduled on machine k after th~ start but before the
compl~tion of °ir Branching fixes which operation of S is sequenced before the
others.

If there is no preemption or if Schrage's heurisitic produces a non-preemptive
schedule for which the value LB is achieved, the set S is based on the following con-
cept of overlaps. Implicit in the non-preemptive single machine schedule is a
schedule for the job-shop problem which, in general, is not feasible. In this job-shop
schedule, the completion times Ci j of operations °i j (s = 1, ..., t)on machine k are
defined by the. single machine ss~hedule. Operations °ij which do not require
machine k are assigned completion times as follows. Firstly, temporary release dates
ri j = Ci j ~ ji j are assigned to operations °i j (s = 1, ..., f). Then, for operation °ij
w"h1ch hass theS property that there is some later operation Oil (I > j) that requires
machine k, its (earliest) completiop time is determined using

c.. = r.. + P .
IJ IJ IJ

Similarly, all other operations which do not require machine k are assigned (latest)
completion times using

C. = LB - q ..
'/ '/

If we are fortunate; these completion times define a feasible job-shop schedule.
However, often, there is infeasibility because more than one operation is processed
ona m'achine in some time interval. Infeasibility is detected if, for operations °ijand
O;'j' which require the same machine,1heir completion time satisfy Cij + Pili' > C;'j' and
c;, +j' + Pij > C;j. We define the overlap between these ope!ations as min {C;j' C;'j' }-
max { C;j -P;j' C;, j ,- Pi' j' }; for pairs of operations which are not processed at the
same time, the overlap is defined as zero. Overlaps can be regarded as a measured of
infeasibility of the schedule.

To determine S when branching is based on overlaps, assume that jobs are renum-
bered so that the sequence of operations on machine k is the non-preemptive
schedule is (°;;;1' ..., O;Jt). Let the lower bound be given by

,B I

+ 
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for some u and y satisfying 1 :5 u :5 v :5 t. If possible, we select from the sequence of
operations corresponding to ri ., an operationOij which has a positive overl.ap with
at least one other operationan'ir set S10 be the set of operations which has a positive
overlap with 0,. Otherwise, this attempt to find Sis repeated, based on overlaps with
an operation flomthe sequence corresI'onding to qivjv. If this fails to generate S, a
similar procedure is applied which searches for overlaps with one of the operations in
the sequence correspon~ing riu- p ju -) (if u ~ 1), riu + p ju + l' qiv + p jv + 1 ' (if v .~ t)
and q. .If S.lS still not determIned, we choose S to De the set of operations
which'hat; a ~ositive overlap with some operation Qij' where o ij is chosen to give ISI
as large as possible: if there are no overlaps, then the schedule is feasible. If S is gen-
erated from overlaps witTl an operation in the sequence corresponding to qiv -\. jv -1 '
qi .or qi , ., then branching fixes the operation which is sequenced last
a~'d~gst tho~e1 cil.5; 10therwise, branching fixes the operation which is sequenced first
amongst those ofS.

We. next describe the remaining details of our branch and bound algorithm. At
each nQdeofthe s~arch tree a release date rijand a tail qijare computed using (1) and
{2) for each operation °ijlfitisfound thatrij +Pij+ qij ~ VB, where VB is an upper
bound provided by the best feasible SOl.ution currently found, then the node is dis-
carded~ Otherwise, for any pairs of operations °ij and Oi\j\ requiring the same
machine that satisfy r.. + P..+ P.\ .\ + q.\ .\ ~ VB, where 0.. is not a Predecessor ofII II I I I I II

°i \j \ then °i \} \ is deemed to be a predecessor ofOij at this node. Two ~euristic.so.l-
utions are computed at each node of the search tree. A forward sequencIng heurIstic
schedules operations starting at time zero. The operation to be scheduled next has its
predecessors already scheduled and is chosen from those which do not leave any un-
necessary machine idle time so that its tail is as large as possible. A backward
sequencing heuristic first finds the problem inverse by interchanging release dates
and tails and interchanging predecessor and successor operations; the forward
sequencing heuristic is then applied to the inverse. A lower bound LB on the
maximum completion time is then computed as described in Section 2. If LB < VB,
then the set S of operations is found on which branching is based.

Our search strategy is one that, in the initia.l stages of branching, selects anode
with the smallest lower bound from which to branch. However, since this approach
requires much computer storage ~pace, a newest active node search is adopted when
available storage is used. The newest active node search branches (rom the mostre'-
cently created active node,

Computational Experience

Tesrproblems were generated for various values of m and n. In these sets of prob-
~ms, there are 6 in which m E {4, 6, 8} and n E {20, 40} where m is small compared
with n, there are 3 in which m = n = 6, m = n = 8 and m = n = 10 and there are 9 in
which m E {20, 30, 40 } and n E { 4, 6, 8 } where m is large compared with n. For all
problems, each job is processed once on each machine. Processing timesPij (i = 1, ..., n,'
j = 1, ..., m) were generated from the uniform distribution [1,100]. For job i(i = 1, ...,
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n), the machines mil' ..., mim required for operations Oil' ." , °im were obtained
from a randomly generated permutation of the integerS 1,... , m. For each value of
(m, n), 10 problems were generated.

The algorithm was cocted in FORTRAN 77 and run on a CDC 7600 computer.
Whenever a problem was not solved within the time limit of 250 seconds, computa-
tion was abandoned. Computational results listing median computation times in sec-
onds, median numbers of nodes and numbers of unsolved problems for each (m, n)
are shown in Table 1. For the (m, n) values (8, 20), (10,10), (30, 8) and (40, 8), there
are at least 5 unsolved problems, so the medians cannot be computed.

We first observe from Table 1 that our algorithm solves over 75% of the 180 test
problems within the time limit. The performance of the algorithm is reasonable for
small m and large n and for small n and large m. It is apparent, however, that prob-
lems in which m = n are extremely difficult: when m = n = 10, none of the test prob-
lems are solved within the time limit. There is some evidence to suggest th~t for fixed
m, where m < n, problems become easier as n becomes larger.

In addition to the computational tests described above, the algorithm was applied
to the two test problems inltOI with m = 5 and n = 20, and with m = n = 10. The per-
formance of our algorithm on these problems is disappointing since neither was sol-
ved within 1000 seconds. The best solution found for the 20-job problem has a

TABLE 1. Computational results.

MCf MNN Nt

4
4
6
6
8
8
6
8

10
20
20
20
30
30
30
40
40
40

20
40
20
40
20
40
6
8

10
4
6
8
4
6
8
4
6
8

0.03
0.07
8.10
0.96

1
1

89
~

1
0
4
0
7
2
0
0

10
0
0
2
0
0
5
0
0
8

5.42
0.36

31.93

10
62

189(1

14
80

1541
12

1.m

0.14
2.51

75.72
0.22
4.76

0.49
9.11

19
J49

MCf: median computation time in seconds.
MNN: median number of nodes.
NU : number of unsolved problems.
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maximum completion time of 1215, whereas the optimal value is 1165. For the 10-job
problem, the best solution found has value 981 compared with the optimal value of
930. However, an alternative algorithm in which the branching rule is based on the
division of time intervals within which an operation must be processed (details of this
approach are given by Carlierlll]) solves the 20-job proglem using 782 search tree
nodes and generates a solution of value 946 for the 10-job problem. Due to poor re-
sults obtained from initial experiments with other test problems, this alternative ap-
proach was abandoned.

Concluding Remarks

Our proposed branch and bound algorithm attempts to make the decisions which
have a major effect on the maximum completion time towards the top of the search
tree. For a reasonable number of test probJems this strategy successfully limits the
search tree to a few nodes. Even with this improved branching rule, however, there
are a significant number of test problems that remain unsolved.

It appears that a new approach is required to obtain much tighter lower bounds
which effectively restrict the search for the harder classes of problems in which m
does not differ greatly from n. The commonly used lower bounds obtained from
single machine subproblems are far too weak for these harder classes of problems.
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