On the Diophantine Equation $x^{2}=4 q^{n}-4 q^{m}+9$

Fadwa S. Abu Muriefah and Amal Al-Rashed
Riyadh University for Girls, Riyadh, Saudi Arabia
abumuriefah@yahoo.com

Abstract

In this paper, we study the title equation with q any prime and $n>m \geq 0$, and we give a complete solution when $m>0$.

Keywords: Diophantine equation, primitive divisor, Lehmer pair.

Introduction

In 1913 the Indian mathematician S. Ramanujan ${ }^{[1]}$ conjectured that the equation $x^{2}=2^{n}-7$, had the only following solutions:

$$
\begin{array}{lllll}
n=3 & 4 & 5 & 7 & 15 \\
x=1 & 3 & 5 & 11 & 181
\end{array}
$$

This conjecture was first proved by Nagell ${ }^{[2]}$ in 1948. There followed during the period 1950-1970, a number of proofs based on a variety of methods (see for example ${ }^{[3,4]}$).

Ramanujan equation has the general form

$$
x^{2}=4 q^{n}-4 q^{m}+D,
$$

where D is any odd integer. The purpose of this paper is to solve

$$
\begin{equation*}
x^{2}=4 q^{n}-4 q^{m}+9 \tag{1}
\end{equation*}
$$

with $x>0, n \geq m \geq 0$, where q is any prime, it is clear that x is an odd integer. To solve equation (1) we will use unique factorization of ideals along with linear recurrences and congruences and the BHV Theorem ${ }^{[5]}$.

We start with the case $n=1$ and $m=0$.

Case I

Let $(n, m)=(1,0)$, in equation (1), then we have

$$
q=\frac{x^{2}-5}{4} .
$$

Since x is odd, let $x=2 c+1$, then we get

$$
\begin{equation*}
q=c^{2}+c-1 \tag{2}
\end{equation*}
$$

where c is a positive integer. It is not known if equation (2) has infinitely many solutions.

Case II

Let $d=\operatorname{g.c.d}(m, n), q_{1}=q^{d}, n_{1}=n / d, m_{1}=m / d$, in equation (1), then we get the same kind of equation (1)

$$
x^{2}=4 q_{1}^{n_{1}}-4 q_{1}^{m_{1}}+9,
$$

with n_{1}, m_{1} are coprime. So we shall suppose $(n, m)=1$, which means that $n \neq m$.

Case III

If $m=0$, and n is an even, then equation (1) has no solutions. So we shall exclude all the above cases.

Now we suppose the case $m>0$, and get the following:

Theorem

The diophantine equation

$$
\begin{equation*}
x^{2}=4 q^{n}-4 q^{m}+9, n>m, \tag{3}
\end{equation*}
$$

has the following two cases:
i. $\boldsymbol{m}=1$: When $q=2$, then it has a unique solution given by $(x, n)=(3,1)$, otherwise it has at most two solutions
ii. $\boldsymbol{m}>1$: (a) When m is odd, it has solutions only if $q=3$, and these solutions are given by

$$
(x, n, m)=(93,7,3),\left(2.3^{m-1}-3,2(m-1), m\right) .
$$

(b) When m is even, it has solutions only if $q=2$ and $m=2$, and these solutions are given by

$$
(x, n)=(1,1),(3,2),(5,3),(11,5),(181,13) .
$$

Proof

(i) Let $m=1$ in (3).

If $q=2$, then we get equation $x^{2}-1=2^{n+2}$, which is clear has a unique solution $(x, q)=(3,2)$. If $q \neq 2$, then the equation $x^{2}=4 q^{n}-4 q+9$, has at most two solutions ${ }^{[6]}$.
(ii) Let $m>1$ in (3). We start by writing

$$
\begin{equation*}
4 q^{m}-9=4 q^{n}-x^{2}=A a^{2} . \tag{4}
\end{equation*}
$$

Where $A \geq 1$ is an odd square free. Suppose p divides m, where m is odd and put $q_{1}=q^{m / p}$, we get:

$$
\begin{equation*}
4 q_{1}^{p}-9=A a^{2} \tag{5}
\end{equation*}
$$

If $A=1$, then $a^{2} \equiv-1(\bmod 4)$, but -1 is not quadratic residuce modulo 4 , therefore $A \neq 1$.

Now if $A=3$, then $q=3$, and dividing equation (4) by 3 , we get the equation

$$
y^{2}=4 q^{n-2}-4 q^{m-2}+1,
$$

which have been solved by Luca ${ }^{[7]}$, and the only solution in our case $(q=3)$ is $n=7, m=3$ and $y=31$, so $x=93$. Also Luca refer to the case $n-2=2(m-2)$ as the trivial solution of this equation, and this will give us the solution $x=2.3^{m-1}-3$, as desired.

Hence we shall suppose that $q_{1} \geq 5$, therefore $A \geq 5$ and $A \not \equiv 0(\bmod 3)$. We write (5) as

$$
\begin{equation*}
q_{1}^{p}=\frac{(3+\sqrt{-A} a)}{2} \frac{(3-\sqrt{-A} a)}{2} \tag{6}
\end{equation*}
$$

Suppose $\left\langle q_{1}\right\rangle=\pi \bar{\pi}$, where π is a prime ideal, therefore the two algebraic integers appearing in the right-hand side of (6) are coprime in the ring $Q(\sqrt{-A})$. Then

$$
\pi^{p} \bar{\pi}^{p}=\left[\frac{3+\sqrt{-A} a}{2}\right]\left[\frac{3-\sqrt{-A} a}{2}\right] .
$$

This implies that

$$
\pi^{p}=\left[\frac{3+\sqrt{-A} a}{2}\right] \text { and } \bar{\pi}^{p}=\left[\frac{3-\sqrt{-A} a}{2}\right] .
$$

So π^{p} is a principal ideal which implies $\mathrm{O}(\pi) \mid p$, hence π is a principal ideal.

Let $z=\frac{c+b \sqrt{-A}}{2}$, where $c \equiv b(\bmod 2)$, is a generator of π then we get

$$
\langle q\rangle=\langle z\rangle \cdot\langle\bar{z}\rangle
$$

and

$$
\left\langle z^{p}\right\rangle=\left[\frac{3+\sqrt{-A} a}{2}\right],\left\langle\bar{z}^{p}\right\rangle=\left[\frac{3-\sqrt{-A} a}{2}\right] .
$$

Since the units in the field $Q(\sqrt{-A})$ are ± 1, therefore

$$
\pm z^{p}=\frac{3+\sqrt{-A} a}{2}, \quad \pm \bar{z}^{p}=\frac{3-\sqrt{-A} a}{2} .
$$

Hence

$$
\begin{equation*}
\frac{u_{2 p}}{u_{p}}=z^{p}+\bar{z}^{p}= \pm 3 . \tag{7}
\end{equation*}
$$

From (7) we get that $u_{2 p}= \pm 3 u_{p}$ which implies that $u_{2 p}$ has no primitive divisors.

Let $p=3$ in equation (7), then we get

$$
\pm 3=z^{p}+\bar{z}^{p}=\frac{c^{3}-3 A c b^{2}}{4} .
$$

Or

$$
\begin{equation*}
\pm 12=c\left(c^{2}-3 A b^{2}\right) \tag{8}
\end{equation*}
$$

If c is even, then so b is even, and in this case the right-hand side of (8) is a multiple of 8 , which is impossible. Thus c is an odd divisor of 12 , therefore $c= \pm 3, \pm 1$. From equation (8) we now conclude that $3 A b^{2}=5$, $-11, \pm 13$, which is obviously impossible.

Assume now that $p \geq 5$, in this case, $u_{2 p}$ has no primitive divisors. From Table 2 and $3 \mathrm{in}^{[5]}$ and a few exceptional values of z. None of the exceptional Lehmer terms from that Table leads to a value of $z \in Q(\sqrt{-A})$. Thus equation (3) has no solutions when m is odd and $q \geq 5$.

Now let us suppose that m is even, say $m=2 k$, and k is a positive integer. From equation (4), we get $x^{2}-9=4 q^{n}-4 q^{2 k}$, which implies that

$$
\frac{x+3}{2} \cdot \frac{x-3}{2}=q^{2 k}\left(q^{n-2 k}-1\right) .
$$

Since the two factors in the left hand side are coprime we get $q=2$ and m $=2$. Substituting in (4) we find the famous equation of Ramanujan $x^{2}=$ $2^{n+2}-7$, which has only the following solutions ${ }^{[2]}$

$$
(x, n)=(1,1),(3,2),(5,3),(11,5),(181,13) .
$$

This concludes the proof.

References

[1] Ramanujan, S., Collected Papers of Ramanujan, (Cambridge Univ. Press, Cambridge, (1927).
[2] Nagell, T., "The diophantine equation $x^{2}+7=2^{n}$ ", Nordisk. Mat. Tidsker, 30, 62-64, Ark. Mat., 4 (1960), 185-187.
[3] Mordell, L. J., Diophantine Equations, (Academic Press, London, (1969)).
[4] Skolem, Th., Chowla, S. and Lewis, J., "The diophantine equation $x^{2}=2^{n+2}-7$ and related problems", Proc. Amer. Math. Soc., 10 (1959), 663-669.
[5] Bilu, Y., Hanrot, G. and Voutier, P.M., "Existence of primitive divisor of Lucas and Lehmer numbers", J. Reine Angew. Math., 539 (2001), 75-122.
[6] Maohua, L., "On the diophantine equation $x^{2}+D=4 p^{n}$ ", J. Number Theory, 41 (1992), 8797.
[7] Luca, F., "On the diophantine equation $x^{2}=4 q^{n}-4 q^{m}+1$, Proc. Amer. Math. Soc., 131 (2002), 1339-1345.

$x^{2}=4 q^{n}-4 q^{m}+9$ در اسة المعادلة الديو فنتية

فدوى أبو مريفة، و أمل الراشد

جامعة الرياض للبنات، الرياض، المدلكة العربية (السعودبية abumuriefah@yahoo.com
|الدستخلص. في هذا البحث درسنا المعادلة الديوفتية:

$$
x^{2}=4 q^{n}-4 q^{m}+9
$$

حيث q عدد أولي و $n>m \geq 0$ أعداد صحيحة و قــمنـا حـــاً كاملا عندما $m>0$.

